STUDIES ON β-LACTAM ANTIBIOTICS

XII. ${ }^{\dagger}$ SYNTHESIS AND ACTIVITY OF NEW 3-ETHYNYLCEPHALOSPORIN

Kohil Kawabata, Takashi Masugi and Takao Takaya*
Central Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6 Kashima, Yodogawa-ku, Osaka 532, Japan
(Received for publication August 30, 1985)

Abstract

The synthesis of the orally absorbed 3-ethynylcephalosporin (1b) is described. In addition, the structure-activity relationships and oral absorption in rats of $7 \beta-[(Z)-2$-(2-amino-4-thiazolyl)-2-carboxymethoxyiminoacetamido]cephalosporins (1) having various aliphatic hydrocarbon groups at the 3-position are discussed. Of these cephalosporins (1), 3-ethynylcephalosporin (1b) exhibited better activity against Staphylococcus aureus than the other cephalosporins (1a, 1c and 1d) and showed moderate oral absorption in rats.

During our extensive studies on the antibacterial activity and oral absorption of $7 \beta-[(Z)-2-(2-$ amino-4-thiazolyl)-2-carboxymethoxyiminoacetamido]cephalosporins ${ }^{1,2)}$ having various substituents at the 3 -position of the cephem nucleus, we observed that compounds with relatively small substituents such as hydrogen, chloro, vinyl, methoxy, and methylthio exhibited higher oral absorptivity in rats. In particular, FK $027^{3,4)}(\mathbf{1 c})^{\dagger \dagger}$ having a vinyl group at the 3 -position was found to be an orally active cephalosporin with almost the same broad antimicrobial activity as the parenteral cephalosporins containing the aminothiazole ring such as ceftizoxime, cefotaxime and cefmenoxime, except against Staphylococcus aureus. Consequently, we directed our research efforts towards synthesizing a new cephalosporin with a sterically small substituent at the 3-position, which might exhibit higher antibacterial activity, in particular against S. aureus, and even better oral absorption than the 3 -vinylcephalosporin (1c; FK027). Among possible structural changes, we were especially interested in preparing a new cephalosporin with a 3 -ethynyl group, whose carbon-carbon bond length is shorter than that of the vinyl group (Fig. 1).

Thus, we report the preparation of 3-ethynyl-

Fig. 1. Chemical structure of FK027 and its related compounds.

1a $\mathrm{X}=\mathrm{CH}_{3}$
1b $\mathrm{X}=\mathrm{C} \equiv \mathrm{CH}$
1c $\mathrm{X}=\mathrm{CH}=\mathrm{CH}_{2}$ (FK027)
1d $\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{3}$ cephalosporin (1b) and the structure-activity relationships and oral absorption in rats of a series of cephalosporins (1) having various aliphatic hydrocarbon substituents at the 3-position.

Chemistry

The new 7 -amino-3-ethynylcephem (7) was prepared by the two pathways outlined in Scheme 1.
In Pathway A, treatment of the 7-phenylacetamido-3-(2,2-dibromovinyl)-2-cephem (2) ${ }^{2)}$ with

[^0]

Table 1. ${ }^{1} \mathrm{H}$ NMR and IR spectral data of cephalosporins $(\mathbf{1 2} \sim \mathbf{1 4})$ with various substituents at the 3-position.

Compound	X	${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, \delta\right)$								IR (Nujol, cm^{-1})
		$\begin{gathered} \mathrm{C}(2)-\mathrm{H}_{2} \\ (2 \mathrm{H}, \mathrm{ABq}, \\ J=17 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{C}(6)-\mathrm{H}_{1} \\ (1 \mathrm{H}, \mathrm{~d}, \\ J=5 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{C}(7)-\mathrm{H}_{1} \\ (1 \mathrm{H}, \mathrm{dd}, \\ J=5,8 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & \mathrm{Ph}_{2} \mathrm{CH} \\ & (1 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{gathered} \mathrm{Ph} \times 2 \\ (10 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{HCO} \\ (1 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} \text { CONH } \\ (1 \mathrm{H}, \mathrm{~d}, \\ J=8 \mathrm{~Hz}) \end{gathered}$	X	β-Lactam
12	$\mathrm{CH}=\mathrm{CBr}_{2}$	3.67 (br s)	5.21	5.89	6.90	$7.53 \sim 7.20$	8.14	9.10	$7.36(1 \mathrm{H}, \mathrm{s})$	1780
13	$\stackrel{E}{\mathrm{CH}}=\mathrm{CHBr}$	3.94, 3.63	5.20	5.86	6.95	$7.55 \sim 7.20$	8.13	9.09	$\begin{aligned} & 7.27(1 \mathrm{H}, \mathrm{~d}, J=15 \mathrm{~Hz}), \\ & 7.06(1 \mathrm{H}, \mathrm{~d}, J=15 \mathrm{~Hz}) \end{aligned}$	1780
14	$\mathrm{C} \equiv \mathrm{CH}$	3.89, 3.58	5.21	5.90	6.93	$7.60 \sim 7.20$	8.13	9.11	$4.72(1 \mathrm{H}, \mathrm{s})$	1800

Table 2. ${ }^{1} \mathrm{H}$ NMR and IR spectral data of cephalosporins ($\mathbf{1 5} \sim \mathbf{1 7}$) with various substituents at the 3 -position

		${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, \delta\right)$						IR (Nujol, cm^{-1})
Compound	X	$\begin{gathered} \mathrm{C}(2)-\mathrm{H}_{2} \\ (2 \mathrm{H}, \mathrm{ABq}, \\ J=17 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & \mathrm{C}(6)-\mathrm{H}_{1} \\ & (1 \mathrm{H}, \mathrm{~d}, \\ & J=5 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} \mathrm{C}(7)-\mathrm{H}_{1} \\ (1 \mathrm{H}, \mathrm{dd}, \\ J=5,8 \mathrm{~Hz}) \end{gathered}$	$\underset{(1 \mathrm{H}, \mathrm{~s})}{\mathrm{HCO}}$	$\begin{aligned} & \text { CONH } \\ & (1 \mathrm{H}, \mathrm{~d}, \\ & J=8 \mathrm{~Hz}) \end{aligned}$	X	β-Lactam
15	$\mathrm{CH}=\mathrm{CBr}_{2}$	3.63 (br s)	5.14	5.78	8.10	9.02	7.41 (1H, s)	1770
16	$\stackrel{E}{\mathrm{CH}} \stackrel{\mathrm{CHBr}}{ }$	3.86, 3.57	5.13	5.74	8.10	9.02	$\begin{aligned} & 7.37(1 \mathrm{H}, \mathrm{~d}, J=15 \mathrm{~Hz}) \\ & 7.02(1 \mathrm{H}, \mathrm{~d}, J=15 \mathrm{~Hz}) \end{aligned}$	1760
17	$\mathrm{C} \equiv \mathrm{CH}$	3.78, 3.47	5.13	5.78	8.10	9.04	$4.50(1 \mathrm{H}, \mathrm{s})$	1775

butyllithium ${ }^{5)}$ did not give the desired 3-ethynyl-2-cephem (3) but many unknown compounds. Therefore, we investigated an alternative approach. The 3-(2,2-dibromovinyl)-2-cephem (2) was oxidized with m-chloroperbenzoic acid to yield the corresponding sulfoxide (4), which was treated with two equivalents of butyllithium to recover unchanged starting material (4). Synthesis of the 3-ethynylcephem 1-oxide (5) was finally achieved by treatment of 4 with four equivalents of butyllithium (yield; 57.7%). The 3-ethynylcephem 1-oxide (5) was reduced with phosphorus trichloride $\left(\mathrm{PCl}_{3}\right)$ to afford the corresponding 3 -ethynyl-3-cephem (6), whose phenylacetyl side chain was removed with phosphorus pentachloride $\left(\mathrm{PCl}_{5}\right)$ to give the 7 -amino-3-ethynylcephem (7).

In Pathway B, the 7-formamido-3-(2,2-dibromovinyl)-2-cephem (9) was obtained from 2 by cleavage of the phenylacetyl side chain with PCl_{5}, followed by formylation with a mixture of formic acid and acetic anhydride. 9 was oxidized with m-chloroperbenzoic acid to afford the corresponding sulfoxide (10), which on treatment with four equivalents of butyllithium at $-70^{\circ} \mathrm{C}$ immediately followed by hydrolysis and then reduction with PCl_{3} gave a mixture of the corresponding 3-ethynyl-3cephem (14) and 3-[(E)-2-bromovinyl]-3-cephem (13) (approximate ratio 40:1). Deformylation of

Scheme 2.

the 3-ethynyl-3-cephem (14) was effected with concentrated hydrochloric acid in methanol to yield the 7-amino-3-ethynylcephem (7).

Alternately, when the sulfoxide (10) was treated with three equivalents of butyllithium at $-70^{\circ} \mathrm{C}$ and the reaction mixture kept at this temperature for 30 minutes before hydrolysis, a mixture of 3ethynylcephem 1-oxide (11) and the starting material (10) (approximate ratio $1: 1$) was obtained. Treatment of the sulfoxide (10) with four equivalents of butyllithium by the same procedure afforded exclusively the corresponding 3-ethynylcephem 1-oxide (11) (yield; 98.5%), which was then converted to the 3-ethynyl-3-cephem (14) by reduction with PCl_{3}. On the basis of the above results, these reactions seem to involve the intermediates \mathbf{X} and $\mathbf{Y}^{6 \sim 8)}$.

In order to confirm the structure, the sulfoxide (10) was reduced with PCl_{3} to afford the 3-(2,2-dibromovinyl)-3-cephem (12). The diphenylmethyl esters (12, 13 and 14) were converted to the corresponding carboxylic acids $(\mathbf{1 5}, \mathbf{1 6}$ and 17$)$ by removal of the diphenylmethyl group with trifluoroacetic acid (TFA) and anisole. The structures of all compounds (12~17) were supported by their ${ }^{1} \mathrm{H}$ NMR and IR spectra summarized in Tables 1 and 2.

Both methods leading to the 7-amino-3-ethynylcephem (7) appeared to be feasible, but the yields obtained via Pathway B turned out to be higher than those via Pathway A.

The cephalosporin (1b) was prepared by the two pathways outlined in Scheme 2. According to Pathway C, 8 was acylated with an activated acid which was obtained by treatment of the acid (18) with Vilsmeier reagent prepared from phosphoryl chloride and N, N-dimethylformamide, followed by oxidation to give the sulfoxide (20). 20 was successfully converted to the corresponding 3-ethynylcephem 1-oxide (21) with four equivalents of butyllithium and then reduced to the acylated 3-ethynyl-3-cephem (22) with PCl_{3}.

For the preparation of a variety of semisynthetic cephalosporins containing various 7-acyl side chains, Pathway D was more suitable. According to Pathway D, the acylated 3-ethynyl-3-cephem (22) was prepared by coupling the 7-amino-3-ethynylcephem (7) with the activated acid of $\mathbf{1 8}$.

Cephalosporin (1b) was obtained by deformylation of 22 with concentrated hydrochloric acid, followed by deprotection of the diphenylmethyl groups with TFA and anisole.

Antibacterial Activity and Oral Absorption
The minimum inhibitory concentrations (MICs) of the cephalosporins (1) having various aliphatic
Table 3. Antibacterial activity of cephalosporins (1).

		MIC $(\mu \mathrm{g} / \mathrm{ml})$		
Compound	X	Staphylococcus aureus 209P JC-1	Escherichia coli	Proteus vulgaris
		>100	31	

Table 4. 24-Hour urinary recovery ($\%$) of cephalosporins (1) after oral administration ($100 \mathrm{mg} / \mathrm{kg}$) to rats.

Compound	X	Urinary recovery (\%)
1a	CH_{3}	25.7
1b	$\mathrm{C} \equiv \mathrm{CH}$	20.0
1c	$\mathrm{CH}=\mathrm{CH}_{2}$	34.0
1d	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	31.5

hydrocarbon substituents at the 3 -position are shown in Table 3.

The 3-ethynylcephalosporin (1b) exhibited better activity against S. aureus than any of the other cephalosporins (1a, 1c and 1d). The cephalosporins ($\mathbf{1 a}$ and $\mathbf{1 d}$) with the alkyl radicals at the 3-position showed no significant activity against S. aureus.

Against Gram-negative bacteria, the activity of FK027 (1c) was highest while the 3-ethynylcephalosporin (1b) showed slightly reduced activity. The cephalosporins (1a and 1d) with the alkyl chains were found to be $8 \sim 16$ times less active against Proteus vulgaris 1 than FK027 (1c).

The urinary excretion of the cephalosporins (1) after oral administration ($100 \mathrm{mg} / \mathrm{kg}$) to rats can be seen in Table 4. The 3-ethynylcephalosporin (1b) was well absorbed, but its urinary recovery was less than that of FK027 (1c). Consequently, we could not find a correlation between the size of the substituent at the 3-position and the oral absorptivity in rats.

In this series, the influence of various substituents at the 3-position of the cephem nucleus on the antibacterial activity and oral absorption in rats was investigated by keeping the 7 -acyl chain constant as the (Z)-2-(2-amino-4-thiazolyl)-2-carboxymethoxyiminoacetyl radical. The cephalosporins with the 2,2 -dihalovinyl groups ${ }^{2)}$ and the ethynyl group (1b) showed improved activity against S. aureus but reduced urinary recovery after oral administration to rats in comparison with FK027 (1c). FK027 (1c) with the vinyl group at the 3-position was found to be a cephalosporin exhibiting not only higher activity against Gram-negative bacteria but also better oral absorptivity in rats.

Experimental

MP were determined using a Thomas-Hoover capillary melting point apparatus and are uncorrected. NMR spectra were recorded at 60 MHz on a JNM-PMX 60 NMR spectrometer and at 100 MHz on a Jeol-MH 100 NMR spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. IR spectra were taken on a Hitachi 260-10 spectrophotometer or a Shimadzu IR-420 spectrophotometer.

Antibiotic Susceptibility

All in vitro antibacterial activity data are given as the minimum inhibitory concentration (MIC) in $\mu \mathrm{g} / \mathrm{ml}$. MICs were determined by the agar dilution method using heart infusion agar (Difco) after incubation at $37^{\circ} \mathrm{C}$ for 20 hours with an inoculum size of about $10^{6} \mathrm{cfu} / \mathrm{ml}$.

Urinary Recovery

Sprague Dawley rats were fasted overnight and orally dosed with $100 \mathrm{mg} / \mathrm{kg}$ of the test drugs. Urine samples were collected for 24 hours after dosing. The samples were assayed by a disc-agar diffusion method using Escherichia coli NIHJ JC-2 or E. coli ATCC 33546 as the test organism and nutrient agar (Difco) as the test medium.

General Preparation of 7

Pathway A:
Diphenylmethyl 7β-Phenylacetamido-3-ethynyl-3-cephem-4-carboxylate 1-Oxide (5): To a soln of diphenylmethyl 7β-phenylacetamido-3-(2,2-dibromovinyl)-3-cephem-4-carboxylate 1 -oxide ${ }^{3)}$ (4) $(0.34 \mathrm{~g}, 0.5 \mathrm{mmol})$ in THF (20 ml) was added a soln of butyllithium (1.2 ml of 1.65 m soln in n-hexane, 2 mmol) at $-70 \sim-60^{\circ} \mathrm{C}$ under a nitrogen atm. After being stirred for 30 minutes at the same temp, the reaction mixture was diluted with EtOAc $(20 \mathrm{ml})$ and acidified with $10 \% \mathrm{HCl}$. The separated organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated to
afford $0.15 \mathrm{~g}(57.7 \%)$ of 5: IR (Nujol) 1780, 1720, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 8.50(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 7.70 \sim 7.20(15 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{s}), 5.85(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.70$ $(1 \mathrm{H}, \mathrm{s}), 3.91(2 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{s})$.

Diphenylmethyl 7β-Phenylacetamido-3-ethynyl-3-cephem-4-carboxylate (6): To a soln of 5 (3.3 g , $6.3 \mathrm{mmol})$ in DMF $(30 \mathrm{ml})$ was added $\mathrm{PCl}_{3}(1.17 \mathrm{ml}, 12.6 \mathrm{mmol})$ at $-30 \sim-20^{\circ} \mathrm{C}$, and the reaction mixture was stirred at the same temp for 30 minutes. The resultant mixture was poured into a mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The separated organic layer was washed with satd sodium bicarbonate soln and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The soln was evaporated in vacuo to afford $2.5 \mathrm{~g}(72.0 \%)$ of 6: IR (Nujol) 1770, 1720, $1650 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 9.21(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.70 \sim 7.20(15 \mathrm{H}$, m), $7.00(1 \mathrm{H}, \mathrm{s}), 5.80(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{m}), 3.60$ ($2 \mathrm{H}, \mathrm{s}$).

Diphenylmethyl 7β-Amino-3-ethynyl-3-cephem-4-carboxylate Hydrochloride (7): Pyridine (0.05 $\mathrm{ml}, 0.6 \mathrm{mmol}$) was added to a suspension of $\mathrm{PCl}_{5}(0.125 \mathrm{~g}, 0.6 \mathrm{mmol})$ in dichlo romethane (1 ml) at $-10^{\circ} \mathrm{C}$, and the mixture was stirred at $-15 \sim-5^{\circ} \mathrm{C}$ for 30 minutes. $6(0.153 \mathrm{~g}, 0.3 \mathrm{mmol})$ was added to the above mixture at $-10^{\circ} \mathrm{C}$ and the reaction mixture was stirred under ice-cooling for 1 hour. Then, $\mathrm{MeOH}(0.2 \mathrm{ml})$ was added to the reaction mixture at $-20^{\circ} \mathrm{C}$ and the resulting soln was stirred under ice-cooling for 1 hour. $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{ml})$ was added to the above mixture under icecooling. The resulting mixture was stirred for 30 minutes at the same temp, and then diluted with diisopropyl ether. The precipitate was collected by filtration, and washed with $\mathrm{H}_{2} \mathrm{O}$ and diisopropyl ether to give $0.091 \mathrm{~g}\left(71.1 \%\right.$) of 7: IR (Nujol) $1780,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{8}) $\delta 7.60 \sim$ $7.07(10 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{s}), 5.28(2 \mathrm{H}, \mathrm{s}), 4.82(1 \mathrm{H}, \mathrm{s}), 3.92$ and $3.68(2 \mathrm{H}, \mathrm{ABq}, J=17 \mathrm{~Hz})$.

Pathway B:
Diphenylmethyl 7β-Amino-3-(2,2-dibromovinyl)-2-cephem-4-carboxylate Hydrochloride (8): 8 was obtained $(97.8 \%$) from 2 by a similar procedure as described for the prepn of 7: IR (Nujol) 1775, $1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{\theta}\right) \delta 7.63 \sim 7.13(11 \mathrm{H}, \mathrm{m}), 7.08(1 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}, \mathrm{s}), 5.70(1 \mathrm{H}, \mathrm{s}), 5.20$ $(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz})$.

Diphenylmethyl 7β-Formamido-3-(2,2-dibromovinyl)-2-cephem-4-carboxylate (9): 8 (5 g, 8.5 $\mathrm{mmol})$ was added to a mixture of $\mathrm{EtOAc}(50 \mathrm{ml})$, THF $(50 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, and the mixture was adjusted to pH 7 with satd sodium bicarbonate soln. The separated organic layer was washed with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The soln was evaporated in vacuo and the residue was dissolved in dichloromethane (50 ml). On the other hand, a mixture of acetic anhydride ($3.2 \mathrm{ml}, 34 \mathrm{mmol}$) and formic acid ($1.29 \mathrm{ml}, 34 \mathrm{mmol}$) was stirred at $40 \sim 45^{\circ} \mathrm{C}$ for 30 minutes. This soln was added to the dichloromethane soln obtained above under ice-cooling, and the resultant mixture was stirred at the same temp for 1 hour. The reaction mixture was poured into a mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The separated organic layer was washed with satd sodium bicarbonate soln and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The soln was evaporated in vacuo to afford $4.2 \mathrm{~g}\left(85.4 \%\right.$) of 9: IR (Nujol) $1780,1725,1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{8}\right) \delta 9.17(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{s}), 7.73 \sim 7.23(11 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}$, s), $5.70(1 \mathrm{H}, \mathrm{s}), 5.60(1 \mathrm{H}, \mathrm{dd}, J=4,8 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz})$.

Diphenylmethyl 7β-Formamido-3-(2,2-dibromovinyl)-3-cephem-4-carboxylate 1-Oxide (10): To a mixture of $9(4.2 \mathrm{~g}, 7.26 \mathrm{mmol})$ in EtOAc $(42 \mathrm{ml})$ was added a soln of m-chloroperbenzoic acid (1.72 $\mathrm{g}, 10 \mathrm{mmol})$ in $\mathrm{EtOAc}(8 \mathrm{ml})$ at $-20 \sim-10^{\circ} \mathrm{C}$ and the resultant mixture was stirred at $-10^{\circ} \mathrm{C}$ for 45 minutes. The precipitate was collected by filtration to afford $1.9 \mathrm{~g}(43.7 \%)$ of $\mathbf{1 0}$: IR (Nujol) $3270,1790,1710,1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 8.47(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{s}), 7.77 \sim 7.20$ $(11 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.17 \sim 3.67(2 \mathrm{H}, \mathrm{m})$.

Diphenylmethyl 7β-Formamido-3-ethynyl-3-cephem-4-carboxylate 1-Oxide (11): $\mathbf{1 1}$ was obtained (98.5%) from 10 by a similar procedure as described for the prepn of 5 : IR (Nujol) 1790, 1720, 1660 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 8.48(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s}), 7.78 \sim 7.12(10 \mathrm{H}, \mathrm{m}), 6.97(1 \mathrm{H}, \mathrm{s})$, $6.03(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{s}), 4.08 \sim 3.67(2 \mathrm{H}, \mathrm{m})$.

Diphenylmethyl 7β-Formamido-3-ethynyl-3-cephem-4-carboxylate (14): 14 was obtained (55.5%) from 11 by a similar procedure as described for the prepn of 6 : mp $156 \sim 160^{\circ} \mathrm{C}$;

Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 65.31, \mathrm{H} 4.41$, N 6.62, S 7.58. Found: C 65.59, H 4.15, N 6.26, S 7.81.

Diphenylmethyl 7β-Formamido-3-[(E)-2-monobromovinyl]-3-cephem-4-carboxylate (13): To a soln of $10(54 \mathrm{~g}, 0.091 \mathrm{~mol})$ in THF (1.5 liters) was added a soln of butyllithium (235 ml of 1.55 m soln in n-hexane, 0.364 mol) at $-70 \sim-60^{\circ} \mathrm{C}$ under a nitrogen atm. Immediately after the addition, the reaction mixture was diluted with $\mathrm{EtOAc}(1$ liter) and acidified with $10 \% \mathrm{HCl}$. The separated organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated and the residue was dissolved in DMF (300 ml). To the DMF soln was added $\mathrm{PCl}_{3}(15.1 \mathrm{ml}, 0.173 \mathrm{~mol})$ at $-30 \sim$ $-20^{\circ} \mathrm{C}$. The resultant mixture was stirred at the same temp for 30 minutes. The reaction mixture was poured into a mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the separated organic layer was washed with satd sodium bicarbonate soln and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The soln was evaporated to yield a brownish powder, which was recrystallized from dichloromethane - diisopropyl ether to afford 20.03 g (55.5%) of 14 . The filtrate was purified by column chromatography on silica gel, eluting with dichloromethane - EtOAc (10: 1) to give $0.61 \mathrm{~g}(1.4 \%)$ of $\mathbf{1 3} ; \mathrm{mp} 139 \sim 142^{\circ} \mathrm{C}$.

Diphenylmethyl 7β-Amino-3-ethynyl-3-cephem-4-carboxylate Hydrochloride (7): Concd HCl $(1.6 \mathrm{ml}, 18.12 \mathrm{mmol})$ was added to a suspension of $14(3 \mathrm{~g}, 7.17 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{ml})$ at room temp for 2 hours. The reaction mixture was poured into ether $(100 \mathrm{ml})$ and the resulting precipitate was collected by filtration to afford $2.79 \mathrm{~g}(99.7 \%)$ of 7 .

Diphenylmethyl 7β-Formamido-3-(2,2-dibromovinyl)-3-cephem-4-carboxylate (12)
12 was obtained (73.5%) from 10 by a similar procedure as described for the prepn of $\mathbf{6}$; mp $119 \sim 124^{\circ} \mathrm{C}$.

Anal Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SBr}_{2}$: C 47.77, H 3.14, N 4.84, S 5.54, Br 27.64. Found:

C 47.66, H 3.02, N 4.83, S 5.57, Br 27.48.
7β-Formamido-3-(2,2-dibromovinyl)-3-cephem-4-carboxylic Acid (15)
TFA (10 ml) was added to a mixture of $\mathbf{1 2}(10 \mathrm{~g}, 17.3 \mathrm{mmol})$ and anisole $(10 \mathrm{ml})$ in dichloromethane (30 ml) under ice-cooling, and the reaction mixture was stirred at the same temp for 30 minutes. The resultant mixture was poured into diisopropyl ether, and the precipitate was collected by filtration. The above precipitate was added to a mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the mixture was adjusted to pH 7.0 with satd sodium bicarbonate soln. The separated aq layer was acidified to pH 2 with $10 \% \mathrm{HCl}$, and extracted with EtOAc. The EtOAc soln was washed with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The soln was evaporated in vacuo to afford $7.15 \mathrm{~g}(73.5 \%)$ of 15.
7β-Formamido-3-[(E)-2-monobromovinyl]-3-cephem-4-carboxylic Acid (16)
16 was obtained (87.1%) from 13 by a similar procedure as described for the prepn of $\mathbf{1 5} ; \mathrm{mp}$ $122 \sim 126^{\circ} \mathrm{C}$.
7β-Formamido-3-ethynyl-3-cephem-4-carboxylic Acid (17)
17 was obtained (34.9%) from 14 by a similar procedure as described for the prepn of 15 ; mp $145 \sim 153^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR and IR data of compounds $(\mathbf{1 2} \sim 17)$ were listed in Tables 1 and 2.
General Preparation of $\mathbf{1 b}$
Pathway C:
Diphenylmethyl 7β-[(Z)-2-Diphenylmethoxycarbonylmethoxyimino-2-(2-formamido-4-thiazolyl)-acetamido]-3-(2,2-dibromovinyl)-2-cephem-4-carboxylate (19): To a soln of DMF ($1.89 \mathrm{ml}, 24.4 \mathrm{mmol}$) in THF (72 ml) was added phosphoryl chloride ($2.25 \mathrm{ml}, 24.4 \mathrm{mmol}$) under ice-cooling, and the mixture was stirred at the same temp for 30 minutes to prepare the Vilsmeier reagent. To the above mixture was added the N-formyl acid ${ }^{3)}(\mathbf{1 8})(8.96 \mathrm{~g}, 20.4 \mathrm{mmol})$ under ice-cooling, and the resultant mixture was stirred at the same temp for 30 minutes to produce an activated acid soln of $\mathbf{1 8}$. To a soln of the 7β-amino-3-ethynylcephem (7) ($10 \mathrm{~g}, 18.2 \mathrm{mmol}$) and N-(trimethylsilyl)acetamide (13.4 g , $102 \mathrm{mmol})$ in EtOAc (100 ml) was added the above activated acid soln at $-30^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $-20 \sim-10^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was poured into a mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The separated organic layer was washed with satd sodium bicarbonate soln and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The soln was evaporated in vacuo to afford $15.3 \mathrm{~g}(92.7 \%)$ of 19 : IR (Nujol) 1760, 1740, $1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 9.77(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.51(1 \mathrm{H}, \mathrm{s}), 7.67 \sim$
$7.10(21 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{s}), 5.67(1 \mathrm{H}, \mathrm{s}), 5.63(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.23$ $(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.98(2 \mathrm{H}, \mathrm{s})$.

Diphenylmethyl 7β-[(Z)-2-Diphenylmethoxycarbonylmethoxyimino-2-(2-formamido-4-thiazolyl)-acetamido]-3-(2,2-dibromovinyl)-3-cephem-4-carboxylate 1-Oxide (20): 20 was obtained (37.9\%) from 19 by a similar procedure as described for the prepn of 10 : IR (Nujol) 1790, 1710, 1680, 1650 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{b}}\right) \delta 9.10(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.52(1 \mathrm{H}, \mathrm{s}), 7.80 \sim 7.10(21 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{s})$, $6.90(1 \mathrm{H}, \mathrm{s}), 6.08(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.93(2 \mathrm{H}, \mathrm{s}), 4.07 \sim 3.67(2 \mathrm{H}, \mathrm{m})$.

Diphenylmethyl $7 \beta-[(Z)$-2-Diphenylmethoxycarbonylmethoxyimino-2-(2-formamido-4-thiazolyl)-acetamido]-3-ethynyl-3-cephem-4-carboxylate 1-Oxide (21): 21 was obtained (76.5%) from 20 by a similar procedure as described for the prepn of 5: IR (Nujol) 1790, 1710, $1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{b}\right) \delta 9.17(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.50(1 \mathrm{H}, \mathrm{s}), 7.90 \sim 7.10(21 \mathrm{H}, \mathrm{m}), 6.97(1 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{s}), 6.08$ $(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.90(2 \mathrm{H}, \mathrm{s}), 4.70(1 \mathrm{H}, \mathrm{s}), 4.10 \sim 3.67(2 \mathrm{H}, \mathrm{m})$.

Diphenylmethyl $7 \beta-[(Z)$-2-Diphenylmethoxycarbonylmethoxyimino-2-(2-formamido-4-thiazolyl)-acetamido]-3-ethynyl-3-cephem-4-carboxylate (22): 22 was obtained (79.3%) from 21 by a similar manner as described for the prepn of 6: IR (Nujol) 1780, 1720, $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.75(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.50(1 \mathrm{H}, \mathrm{s}), 7.75 \sim 7.07(21 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{s}), 5.97(1 \mathrm{H}, \mathrm{dd}$, $J=5,8 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.88(2 \mathrm{H}, \mathrm{s}), 4.67(1 \mathrm{H}, \mathrm{s}), 3.90 \sim 3.50(2 \mathrm{H}, \mathrm{m})$.

Diphenylmethyl 7β-[(Z)-2-(2-Amino-4-thiazolyl)-2-diphenylmethoxycarbonylmethoxyiminoacet-amido]-3-ethynyl-3-cephem-4-carboxylate (23): To a soln of $22(2.7 \mathrm{~g}, 3.33 \mathrm{mmol})$ in $\mathrm{MeOH}(13.5 \mathrm{ml})$ was added concd $\mathrm{HCl}(0.73 \mathrm{ml}, 8.27 \mathrm{mmol})$ at room temp and the reaction mixture was stirred at the same temp for 2 hours. The reaction mixture was poured into a mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}$ and the soln was adjusted to pH 7 with satd sodium bicarbonate soln. The separated organic layer was washed with brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The soln was evaporated in vacuo to afford $2.28 \mathrm{~g}(87.7 \%)$ of 23 : IR (Nujol) 1780, 1720, 1675, $1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 9.65(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.77 \sim 7.00$ $(20 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{s}), 6.67(1 \mathrm{H}, \mathrm{s}), 5.93(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.83$ $(2 \mathrm{H}, \mathrm{s}), 4.67(1 \mathrm{H}, \mathrm{s}), 3.77 \sim 3.57(2 \mathrm{H}, \mathrm{m})$.
7β-[(Z)-2-(2-Amino-4-thiazolyl)-2-carboxymethoxyiminoacetamido]-3-ethynyl-3-cephem-4-carboxylic Acid (1b): 1b was obtained (75.4%) from 23 by a similar procedure as described for the prepn of 15: IR (Nujol) 3300, $1770,1670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.48(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{s})$, $5.83(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{s}), 4.48(1 \mathrm{H}, \mathrm{s}), 4.02 \sim 3.37(2 \mathrm{H}, \mathrm{m})$.

Pathway D:
Diphenylmethyl 7 β-[(Z)-2-Diphenylmethoxycarbonylmethoxyimino-2-(2-formamido-4-thiazolyl)-acetamido]-3-ethynyl-3-cephem-4-carboxylate (22): 22 was obtained (93.7%) from 7 and 18 by a similar manner as described for the prepn of 19.

The following compounds were obtained from diphenylmethyl 7β-amino-3-ethyl-3-cephem-4carboxylate ${ }^{9)}$ and 2-tert-butoxycarbonylmethoxyimino-2-(2-formamido-4-thiazolyl)acetic acid ${ }^{10)}$ according to Pathway D.

Diphenylmethyl $7 \beta-[(Z)-2$-tert-Butoxycarbonylmethoxyimino-2-(2-formamido-4-thiazolyl)acet-amido]-3-ethyl-3-cephem-4-carboxylate: IR (Nujol) 1780, $1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.43$ (1 H , $\mathrm{d}, J=8 \mathrm{~Hz}), 7.55 \sim 7.05(11 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{s}), 5.73(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.1(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.52$ $(2 \mathrm{H}, \mathrm{s}), 3.44(2 \mathrm{H}, \mathrm{m}), 2.7 \sim 2.0(2 \mathrm{H}, \mathrm{m}), 1.31(9 \mathrm{H}, \mathrm{s}), 0.92(3 \mathrm{H}, \mathrm{m})$.

Diphenylmethyl 7β-[(Z)-2-(2-Amino-4-thiazolyl)-2-tert-butoxycarbonylmethoxyiminoacetamido]-3-ethyl-3-cephem-4-carboxylate: IR (Nujol) 1775, $1670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.52(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 7.35(10 \mathrm{H}, \mathrm{m}), 6.89(2 \mathrm{H}, \mathrm{s}), 5.97(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.2(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.6(2 \mathrm{H}, \mathrm{s})$, $3.54(2 \mathrm{H}, \mathrm{m}), 2.43(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 1.44(9 \mathrm{H}, \mathrm{s}), 1.0(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.
7β-[(Z)-2-(2-Amino-4-thiazolyl)-2-carboxymethoxyiminoacetamido]-3-ethyl-3-cephem-4-carboxylic Acid (1d): IR (Nujol) 1760, $1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.37(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{s})$, $5.68(1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.56(2 \mathrm{H}, \mathrm{s}), 3.46(2 \mathrm{H}, \mathrm{m}), 2.38(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz})$, $1.03(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.

Acknowledgment

We are grateful to Drs. M. Nishida, Y. Mine and T. Kamimura for providing the biological data and to

Dr. Y. Morimoto and his coworkers for physical measurements.

References

1) Yamanaka, H.; K. Kawabata, K. Miyai, H. Takasugi, T. Kamimura, Y. Mine \& T. Takaya: Studies on β-lactam antibiotics. X. Synthesis and structure-activity relationships of $7 \beta-[(Z)$-2-(2-amino-4-thiazolyl)-2-(carboxymethoxyimino)acetamido]cephalosporin derivatives. J. Antibiotics 39: 101~110, 1986
2) Kawabata, K.; T. Masugi \& T. Takaya: Studies on β-lactam antibiotics. XI. Synthesis and structureactivity relationships of new 3-(2,2-dihalovinyl)cephalosporins. J. Antibiotics 39: 384~393, 1986
3) Kamimura, T.; H. Kojo, Y. Matsumoto, Y. Mine, S. Goto \& S. Kuwahara: In vitro and in vivo antibacterial properties of FK027, a new orally active cephem antibiotic. Antimicrob. Agents Chemother. 25: 98~104, 1984
4) Yamanaka, H.; T. Chiba, K. Kawabata, H. Takasugi, T. Masugi \& T. Takaya: Studies on β-lactam antibiotics. IX. Synthesis and biological activity of a new orally active cephalosporin, cefixime (FK027). J. Antibiotics 38: 1738~1751, 1985
5) Corey, E. J. \& L. Fuchs: A synthetic method for formyl \rightarrow ethynyl conversion ($\mathrm{RCHO} \rightarrow \mathrm{RC} \equiv \mathrm{CH}$ or RC \equiv CR'). Tetrahedron Lett. 1972: 3769~3772, 1972
6) Schlosser, M. \& V. Ladenberger: Basen-induzierte Eliminierung. I. Mechanismus der Reaktion zwischen Styrylchlorid und Lithiumorganylen. Chem. Ber. 100: 3877~3892, 1967
7) Schlosser, M. \& V. Ladenberger: Basen-induzierte Eliminierung. II. α-Chlor-cis-styryllithium und α-Chlor-trans-styryllithium. Chem. Ber. 100: 3893~3900, 1967
8) Schlosser, M. \& V. Ladenberger: Basen-induzierte Eliminierung. III. Der Einfluß von Stereochemie und Substituenten auf die Reaktivität von Vinylchloriden. Chem. Ber. 100: 3901~3915, 1967
9) Weir, N. G. (Glaxo Laboratories Ltd.): Antibiotic cephalosporin compounds. Ger. Offen. 2,139,272, Feb. 10, 1972 [Chem. Abstr. 76: 140850w, 1972]
10) Yamanaka, H.; H. Takasugi, T. Masugi, H. Kochi, K. Miyai \& T. Takaya: Studies on β-lactam antibiotics. VIII. Structure-activity relationships of $7 \beta-[(Z)$-2-carboxymethoxyimino-2-arylacetamido]-3-cephem-4-carboxylic acids. J. Antibiotics 38: 1068~1076, 1985

[^0]: \dagger Paper XI. See ref 2).
 ${ }^{\dagger}+$ Generic name: Cefixime.

